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Abstract. The subject of the paper is the study of the dynamics of the
moving load acting on the hydro-elastic system consisting of a metal
elastic plate and a half-plane filled by a barotropic compressible New-
tonian viscous fluid. Under this study the motion of the plate is de-
scribed by equations of the linear elastodynamics, and the motion of the
compressible viscous fluid is described by the linearized Navier-Stokes
equations. Numerical results are presented and discussed for the case
where the material of the plate is steel, but the fluid material is Glycerin.
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1 Introduction

The review of investigations related to the vibration plate + fluid systems was made in papers [1, 2]
and it was noted therein that until recently there was not any study in this field made within the utilizing of
the linearized exact equations of motion. In the mentioned sense the first attempts were made namely in
the papers [1, 2] in which the frequency response of the system consisting of the elastic [1] and viscoelastic
[2] plate and the half-plane occupied with compressible viscous fluid was studied. Under these studies the
equations of motion for the plate were written by utilizing the exact linearized equations of elastodynamics
and the equations of motion of the fluid were written by utilizing the linearized Navier - Stokes equations.

The other considerable aspect of the investigations regarding the dynamics of the plate-fluid systems
is a dynamic response analysis plate-fluid systems induced by a moving load. Results of these investiga-
tions are applied for construction of the floating bridges and for determination of their efficiency. As an
example for such investigations it can be presented studies carried out in papers [3 - 5] and others listed
therein. However in these investigations the fluid reaction to the plate (i.e. to the floating bridge) is taken
into consideration without solution of the equations of the fluid motion. It is evident that the approach
employed in [3 - 5] is very approximate one and cannot answer the questions how the fluid viscosity,
fluid compressibility, plate thickness and the moving velocity of the external force act on the “hydrostatic
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force” acting on the plate and on the fluid flow velocities. To find the answers to these questions it is nec-
essary to solve the corresponding coupled fluid-plate interaction problems within the scope of the exact
linearized equations described to the plate and fluid motions. In the mentioned sense, in the present paper
the first attempt is made for solution to the problems related to the dynamics of the moving load acting
on a system consisting of the metal elastic plate and half-plane filled with compressible viscous fluid.

2 Formulation of the problem and solution method

Consider a system consisting of the plate-layer and half-plane filled with a barotropic compressible
Newtonian viscous fluid. We associate the coordinate system Ox1x2x3 with the plate and the position
of the points of the constituents we determine in this coordinate system. Assume that the plate occupies
the region {|x1| < ∞,−h < x2 < 0} , but the fluid occupies the region {|x1| < ∞,−∞ < x2 < −h}.
Within this, we consider a motion of the system under consideration in the case where the lineal-located
force which moves with the constant velocity V acts on its free face plane of the plate-layer. Assume that
the plane-strain state in the plate and the two-dimensional flow of the fluid take place in the Ox1x2 plane.

The equations of the plate we take within the scope of the linear theory of elastodynamics, i.e., as
follows:
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Note that in Eq. (2.1) the conventional notation is used.
According to [6], we consider the field equations of motion of the Newtonian compressible viscous

fluid: the density, viscosity constants and pressure of which are denoted by the upper index (2.1). Thus,
the linearized Navier-Stokes and other field equations for the fluid are:
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where ρ
(1)
0 is the fluid density before perturbation. The other notation used in Eq. (2.2) is also conven-

tional.
Assuming that p(1)=-(T11 + T22 + T33) /3, we obtain that λ(1) = −2µ(1)/3 . Moreover, we assume

that the following boundary and contact conditions are satisfied:

σ21 |x2=0 = 0, σ21 |x2=0 = −P0δ (x1 − Vt) ,
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where δ (�) is the Dirac delta function.
This completes the formulation of the problem. For the solution of this problem, we use the moving

coordinate system x′1 = x1 − V t , x′2 = x2, (below we will omit the upper prime on the new moving
coordinates) and replacing the derivatives ∂ (·) /∂t, and ∂2 (·) /∂t2 with −V ∂/∂x1 and V 2∂2/∂x21 ,
respectively, we obtain the corresponding equations and boundary and contact conditions for the sought
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values in the moving coordinate system. For the solution to these equations, we employ the exponential
Fourier transformation with respect to the x1 coordinate

fF (s, x2) =

+∞∫
−∞

f (x1, x2) e
−isx1dx1. (2.4)

Before the employing the Fourier transformation (4) we introduce the dimensionless coordinates and
dimensionless transformation parameter

x1 = x1/h, x2 = x2/h, s = sh. (2.5)

Below we will omit the over-bar on the symbols in (5). Moreover, we will also use the notation

V ′ = V/h, ν(1) = µ(1)/ρ
(1)
0 . (2.6)

For reducing the volume of the paper we do not give here the other details of the solution procedure,
which are similar to those given in the papers [1, 2]. Nevertheless, we recall that under the mentioned
solution procedure the dimensionless parameters
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are introduced. Note that the dimensionless number Nw in (7) can be taken as a Womersley number
and characterizes the influence of the fluid viscosity on the mechanical behavior of the system under
consideration. However, the dimensionless frequency Ω1 in (7) can be taken as the parameter through
which the influence of the compressibility of the fluid on the mechanical behavior of the system under
consideration can be characterized. At the same time, the parameter characterizes the ratio of the M

characteristic stress caused by fluid viscosity to the shear modulus of the plate material.
Thus, within the scope of the solution procedure discussed in the papers [1, 2], we obtain analytical

expression of the sought quantities, after which we determine the originals of those through the expression
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The integrals in (8) are calculated numerically for which the infinite interval [−∞,+∞] is replaced
with the finite one [−S∗

1 ,+S∗
1 ]. The values of the S∗

1 are determined from the convergence criterion of
these integrals in (8). Under calculation of the integrals in (8), the interval [−S∗

1 ,+S∗
1 ] is divided into

a certain number of sorter intervals. Let us denote this number through 2N . Consequently, the length
of the mentioned shorter intervals is S∗

1/N and in each of these shorter intervals the integration is made
by the use of the Gauss integration algorithm with the sample points. Consequently, convergence of the
mentioned numerical integration can be estimated with respect to the values of S∗

1 and N . The various
testing of the convergence of the numerical results show that for the quite converge and validate results are
obtained in the case where N = 2000 and S∗

1 = 5.0 . We do not here consider examples of the numerical
results illustrated this convergence, however note that such examples are given in the paper [1].

This completes the consideration of the solution method.
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3 Numerical results and discussions

It follows from the foregoing discussions that the problem under consideration is characterized
through the dimensionless parameters Ω1 N w, and M which are determined by the expressions in
(7), λ/µ where λ and µ are the mechanical constants which enter the expression of the elastic relations in
Eq. (2.1). Note that the case where Ω1 = 0 corresponds to the case where the fluid is incompressible,
but the case where 1/N w = 0 corresponds to the case where the fluid is inviscid.

In the numerical investigation we assume that the material of the plate-layer is Steel with mechanical
constants: µ = 79 × 109Pa, λ = 94, 4 × 109Pa and density ρ = 1160kg/m3 [7], but the material of
the fluid is Glycerin with viscosity coefficient µ(1) = 1, 393kg/(m · s) density ρ

(1)
0 = 1260kg/m3 and

sound speed a0 = 1459, 5m/s [6]. We also introduce the notation c2 =
√

µ/ρ which is the shear wave
propagation velocity in the layer material.

Fig.1. Distribution of the T22h/P0 with respect to the x1/h.

Fig. 2. The distribution of the ν2µh/ (P0c2) with respect of the x1/h.

Thus, after selection of these materials, the foregoing dimensionless parameters can be determined
through the two quantities: h (the thickness of the plate-layer) and V (the velocity of the external moving
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load). Numerical results which will be discussed below relate to the normal stress acting on the interface
plane between the fluid and plate-layer and to the velocities of the fluid (or of the plate-layer) on the
mentioned interface plane in the directions of the Ox1 and Ox2 axes.

Fig. 3. The distribution of the ν1µh/ (P0c2) with respect of the x1/h in the viscous fluid case.

Fig. 4. The distribution of the ν1µh/ (P0c2) with respect of the x1/h in the inviscid fluid case.

Thus, first we investigate the distribution of the studied quantities T22h/P0, ν2µh/ (P0c2) and
ν1µh/ (P0c2) on the interface plane with respect to the dimensionless coordinate x1/h . We recall that
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here the coordinate x1 is determined with respect to the moving coordinate system and, according to the
coordinate transformation x′1 = x1 − V t, x′2 = x2 which was introduced in the beginning of the previous
section (the upper prime over the moving coordinates was omitted), the change in the values of the x1/h

(i.e. of the x′1/h ) can also be considered as a change in the values of the dimensionless time V t/h. Conse-
quently, the distribution of the foregoing quantities with respect to the moving dimensionless coordinate
x1/h can also be considered as the change of those at some fixed point in the frame of the fixed coordinate
system with respect to the dimensionless time V t/h . Graphs of these distributions are given in Fig. 1 (for
the T22h/P0), Fig. 2 (for the ν2µh/ (P0c2)), Fig. 3 (for the ν1µh/ (P0c2) in the viscous fluid case) and
Fig. 4 (also for the in the inviscid fluid case).

Note that these graphs are constructed in the case where V/h = 500 (1/s) for various values of the
h. In Fig. 1 and Fig. 2 the results related to the viscous and corresponding inviscid fluid cases are given
simultaneously. Here and below under ”inviscid fluid case” (”viscous fluid case”) we will understand the
case where the selected fluid (i.e. Glycerin) is modeled as inviscid (viscous) one. However, the results
obtained for the ν1µh/ (P0c2) in the viscous fluid case incompatible with those obtained in the inviscid
fluid case. Therefore the results obtained for the ν1µh/ (P0c2) in the viscous and inviscid fluid cases
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are given separately in Fig. 3 and Fig. 4 respectively. The mentioned incompatibility can be explained
with disappear of the contact condition ∂u1

∂t

∣∣∣
x2=−h

= ν1|x2=−h in (3) for the inviscid fluid case. Con-

sequently, according to the results given in Fig. 3 and Fig. 4, we can conclude that the distribution of the
velocity ν1µh/ (P0c2) cannot be described within the scope of the inviscid fluid model not only in the
quantitative sense, but also in the qualitative sense.

Fig. 9. The influence of the fluid compressibility on the values of the stress T22h/P0

The analysis of the graphs in these figures shows that the attenuation of the investigated quantities
with |x1/h | takes place more rapidly and the width of the action area of the moving load decrease with
increasing of the plate thickness h under fixed value of the velocity of the moving load. We again note
that the foregoing results can also be estimated as the change of the studied quantities with respect to time
at a certain fixed point of the interface plane. For instance, we consider a point which is in a distance L

from the origin of the fixed coordinate system. According to the relation x1 = L− V t = 0, we determine
the time t∗ = L/V at which the moving load achieves this point. Consequently, the left (right) branch of
the graphs given in Fig. 1 - Fig. 4 which illustrate the change of the studied quantities with respect to the
x1/h under x1/h ≤ 0 (under x1/h ≥ 0 ) can also be taken as the change of those with respect to time t

under t ≥ t∗(under t ≤ t∗) at the point which is in a distance L from the origin of the fixed coordinate
system.

Now we consider the graphs of the dependence between the studied quantities and the velocity V/h .
These graphs for the stress T22h/P0 and for velocities ν2µh/ (P0c2) and ν1µh/ (P0c2) are given in Fig.
5, Fig. 6, Fig. 7 and Fig. 8 which are constructed for various values of the h . Under construction of these
graphs the values of the studied quantities are calculated at x1/h = 0 .

It follows from these graphs that in the case under consideration the influence of the fluid viscosity
on the values of the stress T22h/P0 is insignificant, but on the values of the fluid flow velocity is very
significant.
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Now we consider the results which illustrate the influence of the fluid compressibility on the values
of the studied quantities. We recall that the influence of the fluid compressibility is characterized through
the parameter Ω1 (7). Numerical results show that the influence of the fluid compressibility on the studied
quantities becomes considerable in the cases where Ω1 ≥ 0.25 . However, in the cases where the influence
of the fluid viscosity on the distribution of the stress T22h/P0 and velocity ν2µh/ (P0c2) disappears
almost completely. Under obtaining results related to the incompressible fluid model we assume that
Ω1 = 0.0 . Basing this reason, we investigate the influence of the fluid compressibility on the values of the
studied quantities within the scope of the inviscid fluid case. Thus, according to the foregoing discussions,
an increase in the values of the velocity must increase the difference between the results obtained within
the scope of the compressible and incompressible fluid models. However, the investigations shows that
there exists such value of the velocity of the moving load under which the absolute values of the studied
quantities become infinite and the resonance type event takes place. Note that the existence of the critical
velocity is characteristic one for dynamics of the moving load acting on the layered medium. The review
of the investigations related to critical velocity of the moving load acting on bi-material elastic systems
was made in a paper [8]. However, up to now, we have not found any investigation on the critical velocity
of the moving load action on the hydro-elastic systems. Consequently, the results related to the critical
velocity, which will be discussed here, are the first attempts on the investigations of the critical velocity
of the moving load acting on the hydro-elastic systems. We introduce a notation Vcr/a0 for illustration
of the values of the dimensionless critical velocity. Numerical investigations show that the values of the
Vcr/a0 are the same for each studied quantities and for each point, i.e. for each value of the x1/h at
which the values of these quantities are calculated. Numerical investigations also show that the values
of Vcr/a0 do not depend on the plate thickness h but depend on the compressibility or incompressibility
of the fluid. Moreover, it is established that the values of the Vcr/a0 depend also on the mechanical
properties of the fluid and of the plate materials. For the selected fluid and plate-layer material we obtain
thatVcr/a0 = 0.3262 for the incompressible fluid model case and Vcr/a0 = 03476 for the compressible
fluid model case. Consequently, the compressibility of the fluid causes to increase of the values of the
critical velocity.

Now we consider the graphs of the dependence among T22h/P0 and the velocity V/h constructed for
the compressible and incompressible fluid models in the case where V/h < Vcr/h These graphs are given
in Fig. 9 from which follows that the fluid compressibility causes to decrease of the absolute values of the
pressure acting on the interface plane between the plate and fluid.

With this we restrict ourselves to analysis of the numerical results and note that the study of the
problems which are similar to that considered here will be continued in the further works by the author of
the present paper.
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