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Abstract. Within the scope of the three- dimensional linearized theory
of elastic wave propagation in the initially stressed body the dynamics
of the oscillating moving load acting on the prestrained bilayered slab
resting on a rigid foundation is studied. How the oscillation of this load
acts its critical velocity is analyzed. Elasticity relations of the materials
of the layers are given through the harmonic potential. The numerical
results on the critical velocity and on the influence of the problem pa-
rameters on these results are presented and discussed.
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1 Introduction

Investigations of the dynamics of the oscillating moving load have a great significance because the
results of these investigations may be used in many fields of modern industry such as design of roadway
coverings and bridges intersected by high-speed trains, aircraft carriers, ballistic systems (rail tools, high-
speed precise metal working, memories on magnetic disks) and so on. In [1, 2, 11, 12] and others, with
the scope of the classic linear theory of electrodynamics, appropriate problems on dynamics of moving
forces acting on the system consisting of a covered layer and half-space have been studied. In these
works the motion of layers was described by Kirchhoff and Timoshenko theories, the motion of the half-
space on the basis of exacts equations of linear theory of elastic waves. It should be noted that many
modern problem on the dynamics of the moving load may not be solved within linear theory of elastic
waves. The problems connected with dynamics with prestressed (initially) laminated bodies are among
these ones. Within the framework of certain conditions, these problems may be solved by employing of
the Three dimensional Lineasized Theory of Propagation of elastic waves in Bodies with initial stresses
(TLTPEWBIS). Construction of equations of this theory and their application when studying the problems
of dynamics prestressed bodies was considered in the monograph [9]. However, up to now only several
papers have been devoted to dynamical response of prestressed laminated half-space to moving load [3, 4,
7, 8]. In the paper [7], dynamic response of the system consisting of a layer and prestressed half-plane was
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considered, in which the motion of the facing layer was described by means of Timoshenkos theory of
plates, while the motion of a half-plane by TLTPEWBIS. The solution of the appropriate boundary value
problem was found by using the Fourier transformation. The numerical investigations were carried out for
the case when mechanical relations for the material of the half-plane were given by harmonic potential.
Numerical results on the influence of the problem parameters on the critical velocity was estimated. In [8]
the problem analyzed in [7] was studied on the basis of a complex potential. In the paper [3], the results
obtained in [7, 8] were extended to the case where the motion of the covering layer is also described
by the equations of TLTPEWBIS. The influence of the problem parameters on critical velocity of the
moving load is studied. However, these investigations are carried out for the case where the materials of
the covering layer and half-space are isotropic. The cases where the mentioned materials are anisotropic
(orthotropic) are studied in the paper [4].

Note that in theoretical aspect, the problems considered in the above papers may be assumed as
mathematical simulation for theoretical investigation of dynamics of underground high-speed transport
systems. Obviously, one can precise and generalize the indicated model from different points of view
subject to real facts one of which is vibration of moving forces. Furthermore, in a number of cases, a
system consisting of bilayer prestrained slab and rigid foundation is a more adequate model for certain
classes of real cases [5] than a system consisting of a covering layer and a half-space. Taking the above
mentioned ones into account, in the present paper we attempt to develop investigation [3, 4] for dynamics
of oscillating moving load acting on finitely prestrained bilayer slab resting of a rigid foundation. We will
consider and analyze numerical results on the influence of the oscillation frequency of the moving load
on the values of the critical velocity.

2 Problem statement. Basic equations and relations

Let us consider a bilayer slab resting on a rigid foundation , and determine the position of the slabs
points in natural (initial) state by Lagrange coordinates in Cartesian system of coordinates Ox1x2x3,
(Oy1y2y3). Accept that in natural state, the slab’s layers occupy the domain Ω(2) Ω(1), where

Ω(2) =
{
−∞ < x1 < +∞, −H(2) < x2 < 0, −∞ < x3 < +∞

}
,

Ω(1) =
{
−∞ < x1 < +∞, (−H(1) −H(2) < x2 < −H(2),

−∞ < x3 < +∞} (2.1)

geometry of indicated domains is shown if Fig.1.

Fig.1.
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Along with global system of coordinates Ox1x2x3, (Oy1y2y3) to each m-th layer we associate the
local system of coordinates O(m)x

(m)
1 x

(m)
2 x

(m)
3 , (Oy

(m)
1 y

(m)
2 y

(m)
3 ), that are obtained from the system

of coordinates Ox1x2x3, (Oy1y2y3) by parallel transfer along the axis Ox2(Oy2), moreover m = 1, 2

and x(1)1 = x
(1)
2 = x1, x

(1)
3 = x

(1)
3 = x3, (y

(1)
1 = y

(2)
1 = y1, y(1)3 = y

(2)
3 = y3)

Below, the quantities belonging to the m − th layer, i.e. to the domain Ω(m) will be denoted by
the upper index (m). Furthermore, the quantities belonging to the initial state will be denoted by the
upper index ”0” . Accept that the materials of the layers are highelastic and these layers before contacting
between themselves and with rigid foundation are extended along the axisOx1 with uniformly distributed
normal forces. Herewith initial deformations in layers are determined by displacements

u
(m),0
i = (λ

(m)
i − 1)x

(m)
i , λ

(m)
i = constim, y

(m)
i = λ

(m)
i x

(m)
i . (2.2)

We will determine the relations of elasticity of materials by means of the harmonic potential

Φ(m) =
1

2
λ(m)(S

(m)
1 )2 + µ(m)S

(m)
2 , (2.3)

where

S
(m)
1 =

√
1 + 2ε

(m)
1 +

√
1 + 2ε

(m)
3 − 3,

S
(m)
2 =

(√
1 + 2ε

(m)
1 − 1

)2

+

(√
1 + 2ε

(m)
2 − 1

)2

+

(√
1 + 2ε

(m)
3 − 1

)2

. (2.4)

In expression (3) λ(m), µ(m) denote the material constants ε(m)
i (i = 1, 2, 3) the principal values of

Green’s deformation teusov.
Thus, allowing what has been said above, within the bounds of a precewise-homogeneous body with

using TLTPEWBIS we study dynamical respouse of the indicated bilyaer slab on vibromotive forces
acting on the layer Ω(2). We consider plane deformation in the plane Oy1y2 (i.e. we accept that ε(1)3 =

ε
(2)
3 = ε

(1),0
3 = ε

(2),0
3 = 0 and we conduct investigation by using the coordinates connected with initial

states. Equations of notion:
∂Q

(m)
11

∂y
(m)
1

+
∂Q

(m)
12

∂y
(m)
2

= ρ(m) ∂
2U

(m)
1

∂t(2)
, (2.5)

∂Q
(m)
21

∂y
(m)
1

+
∂Q

(m)
22

∂y
(m)
2

= ρ(m) ∂
2U

(m)
2

∂t(2)
.

Mechanical relations:

Q
(m)
ij = ω

(m)
ijαβ

∂2U
(m)
α

∂y
(m)
1

,

(with respect to α and β (= 1, 2)we conduct summation) (2.6)

where

ω
(m)
1111 =

λ
(m)
1

λ
(m)
2

(
λ(m) + 2µ(m)

)
, ω

(m)
2222 =

λ
(m)
2

λ
(m)
1

(
λ(m) + 2µ(m)

)
,

ω
(m)
1122 = ω

(m)
2211 = λ(m), ω

(m)
1212 = ω

(m)
2121 =

2µ(m)λ
(m)
2

λ
(m)
1 + λ

(m)
2

,

ω
(m)
1221 = ω

(m)
2112 =

2µ(m)λ
(m)
2

λ
(m)
2

(
λ
(m)
1 + λ

(m)
2

) , m = 1, 2. (2.7)

In equations (5)-(7) we accept the following denotation: Q(m)
ij - are the perturbation of components of

Kirchoff’s asymmetric tensor of stresses in the m -th layer U (m)
j are the components of perturbations of

displacement vector, ρ(m) is the density of the material of the m-th layer.
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Taking into account that at initial state the layers of the slab have only normal stress acting on the
areas perpendicular to the axis Oy1 we derive the following relation

λ
(m)
2 =

⌊
2µ(m) + λ(m)

(
2− λ

(m)
1

)⌋(
λ(m) + 2µ(m)

)−1
. (2.8)

Write boundary and non-contact conditions:

Q
(2)
21 = 0, Q

(2)
21 = −P0e

iωtδ (y1 − V t) as y
(2)
2 = λ

(2)
2 = λ

(2)
2 H(2)/2{

U
(2)
i ;Q

(2)
2i

} ∣∣∣
y
(2)
2 =−λ

(2)
2 H(2)/2

=
{
U

(1)
i ;Q

(1)
2i

} ∣∣∣
y
(1)
2 =+λ

(1)
2 H(2)/2

, (2.9)

U
(1)
i

∣∣∣
y
(1)
2 =−λ

(1)
2 H(1)/2

= 0. (2.10)

Notice that in boundary condition (9) V and ω denote velocity and frequency of harmonic vibration
of moving force with quantity P0 furthermore, δ(x) denotes Dirace delta function. thus, the problem
statement is completed.

3 Solution method

Passing to moving systems of coordinates

y
′(m)
1 = y

(m)
1 − V t, y

′(m)
2 = y

(m)
2 . (3.1)

And representing all the sought for functions in the form

g
(
y
′(m)
1 , y

(m)
2 , t

)
= g

(
y
′(m)
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(m)
2

)
eiωt. (3.2)

From (5),(6) we get following equations with respect to amplitude of the replacement vector components.
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Note that while writing equations(13), the prime over the coordinates y1, y2 and the dash over the
sought for functionsU (m)

1 U
(m)
2 was onite; and the notation ω′(m)

nkαβ = ω
(m)
nkαβ/µ

(m), c
(m)
2 =

√
µ(m)/ρ(m)

was introduced. this omission will take place and later on, and in the first boundary condition in (9) ;
contact conditions in (10) will remain in the above written form.

However the second boundary condition in (9) after passages (11) and (12) are transformed into the
following form:

Q
(2)
22 = −P0δ

(
y
(2)
1

)
for y(2)2 = +λ

(2)
2 H(2)/2. (3.4)

Thus, investigation of the considered problem is reduced to the solution of equations (13) within the
boundes of boundary conditions (9), (first condition in (9),(14) and contact conditions(10). for solving
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the indicated boundary value problem we use Fourier’s exponential transformation with respect to y1
coordinates

fF

(
s, y

(m)
2

)
=

+∞∫
−∞

f
(
y1, y

(m)
2

)
e−isy1dy1 (3.5)

After making some transformations we obtain the following equation for Fourier transformation of the
sought-for quantities: (
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where
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From equations (16) we get:
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We find the solution of equation (18) in the form:
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where
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(m)
1 =

√
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a
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Thus, from equations (21), (19) and (6) we find Fourier transformations of all sought-for quantities.
We calculate the unknown A(1)

1 (S), ..., A
(1)
4 (S), A

(2)
1 (S), ..., A

(2)
4 (S) contained in these transformations

from boundary conditions (9)1, (14) and contact conditions from (10), that form a closed system of
algebraic equations.

f(y1, y2) =
1

2π

+∞∫
−∞

fF (s, y2) e
isy1ds. (3.13)

From algebraic equations we find the mentioned unknowns and then use the inverse transformation(23),
for defining the originals of the sought-for functions. Now consider the calculation of integral (23). Notice
that in the case when Ω = 0 (as in papers [8,9] or in the case when C = 0 (as in paper [11,12] calculation

of the integrals(23) is reduced to calculation of the integrals for 1
π
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(17). therefore, in this case integral (23) should be calculated without above simplification, i.e. using the
following formula:
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And the values of S∗ are calculated from requirements of numerical convergence of the appropriate
algorithm. Introduce the following denotation:
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After above mentioned ones the values of stress and displacements are determined from the expression{
σ
(m)
ij ; U

(m)
i

}
= Re

({
σ̃
(m)
ij ; Ũ

(m)
i

}
eiωt

)
(3.17)

according to which we get

σ
(m)
ij =

∣∣∣σ̃(m)
ij

∣∣∣ cos(α(m)
ij + ωt

)
, U

(m)
i =
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i
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i + ωt
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One of the basic issues of dynamics of moving loads is investigation of stress and displacement
distribution. along with this, before this investigation it is necessary to study the issues of critical velocity
i.e. to determine the value of critical velocity and to determine influence of changes of problem parameters
on these values. In the paper, we will stop namely on the issues of critical velocity.

State an algorithm for defining critical velocity. In this connection notice that numerical investigations
show that for each chosen value of dimensionless velocity U (m)

iF , σ
(m)
ijF the subintegrand quantities SH(2)

a have singular points with respect to. And these are simultaneously the solutions of the equation

det
∥∥∥αnm

(
C
(
SH(2)

))∥∥∥ = 0, n,m = 1, 2, ..., 8, (3.19)

where αnm are the coefficients of unknowns in algebraic system of equations obtained from boundary
condition (9) and contact conditions (10). consequently, the singularity order (denote as r ) of integrated
quantities consider with the order of the roods of equation (29). It is known that if 0 ≤ r < 1, integral
(24) may be calculated by using the well known algorithm. For r = 1 calculation of the algorithm is
performed in the sense of Cancly’s principal value. In the case r > 1 the integral doesn’t accept definite
value , and the velocity corresponding to this case is determined as ” critical velocity” At critical velocity,
the resonance-type phenomenon occurs.Obviously , the critical velocity corresponds to local minimum
(or maximum) of the function C = C(SH(2)), satisfying equation (29). Now briefly we consider the
special case of the problem under consideration and state main problem of mechanics related to these
cases.

Case 1. Ω = 0, C ̸= 0. We get a problem on fores moving with constant velocity and influencing on
bilayer slab resting on rigid foundation.In this case, as in [8, 9], the basic issuse of the investigation is
determination of the value of critical velocity (denote then by Cor and determine distribution of contact
stresses for C < Cor

Case 2. Ω ̸= 0, C = 0 We get a stadionary dynamic problem for the system under consideration
subjected to the action of forces harmonically changing in time. According to [11, 12] the basic issuce of
this case is to determine the resonance value of frequency Ω at which displacement and stress get their
own absolutely maximal value.

Case 3. Ω ̸= 0, C ̸= 0 First of all note that all the results belofing to this case are not obtained by
simple superposition of previous two cases. the stated one is agfirmed with the expression ψ(m) cited in
(17). and the main goal of the investigation is to determine the influeme of the frequenag Ω on the value
of Cor, and also to determine the influence of velocity on ”resonance” value of the frequency Ω. In all
above cases, specific studies are based on calculation of integral (24) and the algorithm developed in the
papers [11,12] is used.

4 Numerical results and their discussions

Accept that λ(1)/µ(1) = λ(2)/µ(2) = 1.5 and we carry out all numerical investigations for this
case. For illustrating competence of the used algorithms of PC programmes, at first we consider case
1 that was also considered in the papers [6,8,9] and within the bounds of asscemtious µ(2)/µ(1) = 2,

λ
(2)
1 /λ

(1)
1 = 1.0 ρ(1)/ρ(2) = 0.5 we study influence of change of H(1)/H(2) on the value of the critical

velocity Cor. According to the known state, at subsonic mode motion, with growth of H(1)/H(2) the
value of (Cor) should, approach to the appropriate value of Cor, obtained for the system composed of a
facing layer and a half-space that were considered in [6,8,9]. The appropriate results are given in Table 1,
and they affirm the stated states.
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Now let’s consider numerical example related to the case 3. Notice that in case 1 the value of critical
velocity is determined according, to the graphs of dependence between C and SH(2) structured only for
the values of SH(2) > 0 as the function DSH(2) = det

∥∥∥αnk

(
SH(2)

)∥∥∥ is an even function of argument

of SH(2). Hoverer in case 3, as it was stated above, indicating evenness of the function D
(
SH(2)

)
and

thereby the evenness of the functionC = C
(
SH(2)

)
doesint hold. Therefore in case 3, when determining

the values of Cor it is necessary to use the graph of the function C = C
(
SH(2)

)
that is constructed not

only for the value of SH(2) < 0. For illustrating the above stated one, Left;s consider the graphs of the
function C = C

(
SH(2)

)
cited in Fig. 2 and that were constructed within the bounds of suppositions

µ(2)/µ(1) = 0, 5, H(1)/H(2) = 0, 5 ρ(1)/ρ(2) = 1, 6, λ
(2)
1 /λ

(1)
1 = 1.0

As seen from the graph, in the caseΩ = 0.0 the branches of the functionC = C
(
SH(2)

)
constructed

for SH(2) < 0 and for SH(2) > 0 are symmetric with respect to the strightline, determined with the
equation SH(2) = 0.0 However in the cases Ω > 0.0 the indicated symmetry violates, and the value
of dimensionless velocity corresponding to the case dc/d

(
SH(2)

)
= 0 for the branch constructed for

SH(2) < 0 becomes less than for the branch constructed for SH(2) < 0. Consequently, the value of least
of oritical velocity is determined according to the branch of the function C = C

(
SH(2)

)
constructed

for SH(2) < 0. Therewith the value of Cor decreases with increasing Ω. However, the value of critical
velocity determined by the branch of the function C = C

(
SH(2)

)
constructed for SH(2) > 0 increases

clue to increase of Ω.
From practical point of view the least critical velocities are more important than the subsequent ( in

quantity) critical velocities. Therefore, we consider influmence of change of problem parameters on its
value, i.e. the least value of critical velocity. Therewith we accept µ(2)/µ(1) = 0, 5, ρ(1)/ρ(2) = 0, 2 and
study influence of initial strains of of slab’s layers i.e. the values of parameters λ(2)1 λ

(1)
1 and influence of

H(1)/H(2) on the value of Cor for different values of Ω. Note that numerical result for theis investigation
are given in Tables 2,3 and 4 for the values of Ω > 0.0; 0, 1 and 0,2 respectively. the conclusions from the
analysis of these results are cited in the following section.

Fig.2.
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Table 1.

H(1)/H(2)

0.5 1.0 1.5 2.0 4.0 6.0 ∞
2∗0.9084 2∗0.8812 2∗0.8651 2∗0.8556 2∗0.8431 2∗0.8415 0.8415[8.9]

0.8370[6]

Table 2.

2 ∗ λ(2)1 /λ
(1)
1 H(1)/H(2)

0.5 2.0 5.0
1.0/1.0 0.8266 0.7142 0.6871

1.02/1.0 0.8657 0.7646 0.7393
1.05/1.0 0.9306 0.8326 0.8088
1.07/1.0 0.9551 0.8740 0.8505
1.0/1.02 0.8263 0.7152 0.6898
1.0/1.05 0.8259 0.7037 0.6771
1.0/1.07 0.8393 0.7068 0.6846
1.0/1.10 0.8399 0.7113 0.6937
1.0/1.15 0.8411 0.7184 0.7042
1.0/1.20 0.8427 0.7253 0.7113

Table 3.

2∗λ(2)1 /λ
(1)
1 H(1)/H(2)

0.5 2.0 5.0
1.0/1.0 0.7800 0.6270 0.5603

1.02/1.0 0.8204 0.6793 0.6121
1.05/1.0 0.8772 0.7501 0.6805
1.07/1.0 0.9130 0.7932 0.7213
1.0/1.02 0.7794 0.6278 0.5639
1.0/1.05 0.7786 0.6128 0.5190
1.0/1.07 0.7950 0.6158 0.5285
1.0/1.10 0.7953 0.6203 0.5420
1.0/1.15 0.7963 0.6276 0.5625
1.0/1.20 0.7976 0.6348 0.5804

Table 4.

2∗λ(2)1 /λ
(1)
1 H(1)/H(2)

0.5 2.0 5.0
1.0/1.0 0.7293 0.5268 0.3729

1.02/1.0 0.7709 0.5800 0.4188
1.05/1.0 0.8294 0.6521 0.4796
1.07/1.0 0.8663 0.6960 0.5161
1.0/1.02 0.7285 0.5272 0.3763
1.0/1.05 0.7273 0.5095 0.3812
1.0/1.07 0.7353 0.5121 0.3165
1.0/1.10 0.7779 0.5161 0.3287
1.0/1.15 0.8444 0.5228 0.3479
1.0/1.20 0.9022 0.5295 0.3658
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5 Conclusion

Thus, from the analytics of the obtained results we can make the following conclusions:
-the value of Cor monotonically increases with growth of the thickness of the lover layer whose

rigidity is less than the rigidity of the facing layer;
-the initial extension of the upper layer of the slab increases the value of Cor , however the influence

of initial extension of the lower layer on the value of Cor is nonmonotone:
The increase of vibrations of the moving load, i.e. the increase of the values of Ω reduces to decrease

of critical velocity.
Investigation and analysis of distributed stresses acting on the surfaces of layer’s contacts will be

conducted in other work of the author.
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