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Abstract. The paper is devoted to the solution of a problem of free os-
cillations of laterally strengthened orthotropic cylindrical shell filled
with viscous fluid, by variational principle. The frequency equation
of oscillations of a laterally strengthened orthotropic cylindrical shell
filled with viscous fluid is constructed on the basis of Ostrogradsky-
Hamilton’s variational principle and is realized numerically. Surface
loads acting on a laterally strengthened cylindrical shell as viewed
from fluid are determined from the solutions of Navier-Stock’s linearized
equation.
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1 Introduction

Structural materials are widely used in different fields of machine building, aircraft industry, ship-
building, etc. This reduces to necessity of total account of properties of materials and constructions for
more rational designing and reliable strength analysis. For more complete description of load-bearing
capacity of a construction, it is expedient to take into account the external action forces as viewed from
medium. One of such actions is its contact with viscous fluid. External action forces as viewed from
viscous fluid, in fact are surface forces and are stipulated by the contact between the shell and viscous
fluid. The solution of such type problems represents mathematical difficulty that deepens with account of
dynamical effects that is necessary in problems of seismic stability, vibration that are often encountered
in engineering. Therefore, development of an approximate method is required. One of the approximate
methods is variational. This is explained by the fact that it allows to get consistent approximate theories
of thin walled medium-contacting constructions of shells and bars type.

Note that the solutions described in references belong chiefly to a strengthened mediumless cylindrical
shell [1]. Oscillations of smooth isotropic cylindrical shells with medium were completely studied in the
papers [2,3]. Behavior of deformable smooth shells with flowing fluid was considered in the monograph
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[4]. In the paper [5], the oscillations of laterally strengthened orthotropic Shells with flowing ideal fluid
in medium are studied. Eigen oscillations of a flowing fluid-filled isotropic cylindrical shell strengthened
with crossed system of ribs in infinite elastic medium was considered in the paper [6]. Free oscillations of
ideal fluid-dilled ribbed isotropic cylindrical shells at axial compression were studied in [7]. As it follows
from the cited review, there are the papers devoted to free oscillations of compressible viscous fluid-filled
anisotropic cylindrical shells. Therefore study of one of main dynamical characteristics of the elastic
system the frequency of eigen oscillations of viscous fluid-filled cylindrical shells of great practical value.

A ribbed shell is considered as a system consisting of an eigen anisotropic shell and lateral ribs
rigidly connected with it along the contact lines. It is accepted that the stress-strain state of a shell may
be completely determined within the linear theory of thin shells based on Kirchoff-Liav hypothesis, while
for calculation of ribs, the theory of Kirchhoff-Klebsh curvilinear bars is applircable. The system of
coordinates is chosen so that coordinate lines coincide with the lines of the main curvature of the median
surface of the shell. Therewith it is supposed that the ribs are located along the coordinate lines, and their
edges as the edge of the casing lie on the same coordinate plane. The strain state of the casing may be
determined by three components of displacements of its median surface u, ϑ and w. Therewith the turning
angle of normal elements φ1, φ2 with respect to coordinate lines y and x are expressed by w and ϑ by
means of dependences φ1 = −∂w

∂x , φ2 = −
(
∂w
∂y + ϑ

R

)
, where R is the radius of the shell’s median

surface.
For describing strain state of ribs, in addition to three components of displacements of gravity centers

of their cross sections (uj , ϑj , wj of the j-th cross section), it is necessary to define also the twisting
angles φkpi and φkpj .

Taking account that according to accepted hypotheses it holds the constancy of radial deflections
along the height of sections, and also equality of appropriate twisting angles following from the condition
of rigid connection of ribs and a shell, we write the following relations:

uj (y) = u
(
xj , y

)
+ hjφ1

(
xj , y

)
;ϑj (x) = ϑ

(
xj , y

)
+ hjφ2

(
xj , y

)
;

wj (x) = w
(
xj , y

)
;φ1 = φ2

(
xj , y

)
;φkpj (x) = φ1

(
xj , y

)
; (1)

Here hi = 0, 5h + H1
i , hj = 0, 5h + H1

j , h is the shell’s thickness, H1
i and H1

j are distances from the
axes of the i-th longitudinal and j-th lateral bars to the shell’s surface, xi and yi are the coordinates of
junction lines of ribs with a shell, φi, φkpi and φj , φkpj are turning and twisting angles of lateral sections
of longitudinal and lateral bars, respectively.

For external actions it is supposed that surface loads acting on a ribbed shell as viewed from viscous
fluid may be reduced to the components qx, qy and qz applied to the median surface of the shell.

We get differential equations of motion and natural boundary conditions for a laterally strengthened
viscous fluid-filled orthotropic cylindrical shell based on Ostrogradsky-Hamilton’s variational principle.
For that we preliminarily write potential and kinetic energy of the system.

The potential energy of elastic deformation of an orthotropic cylindrical shell is of the form:

Π0 =
hR

2

x2∫
x1

y2∫
y1

{
b11

(
∂u

∂x

)2

− 2 (b11 + b12)
w

R

∂u

∂x

+
w

R2
(b11 + 2b12 + b22) + b22

(
∂ϑ

∂y

)2

− 2 (b12 + b22)
w

R

∂ϑ

∂y
+ 2b12

1

R

∂u

∂x

∂ϑ

∂y

+b66

(
∂u

∂y

)2

+ b66

(
∂ϑ

∂x

)2

+ 2b66
∂u

∂y

∂ϑ

∂x

}
dxdy, (2)

where b11 = E1
1−ν1ν2

; b22 = E2
1−ν1ν2

; b12 = ν2E1
1−ν1ν2

= ν1E2
1−ν1ν2

; b66 = G12 = G, R is he radius of shell’s
median surface, h is the shell’s thickness u,ϑ, w are the components of displacements of the points of the
shell’s median surface, E1, E2 are module of elasticity of the shell’s material in coordinate directions, G
is the modulus of elasticity at shear.
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The expressions for potential energy of elastic deformation of the j-th lateral rib are as follows [1]:

Πj =
1

2

y2∫
y1

[
ẼjFj

(
∂ϑj
∂y

−
wj

R

)2

+ ẼjJxj

(
∂2wj

∂x2
−

wj

R2

)2

+ẼjJzj

(
∂2ui
∂y2

−
φkpj

R

)2

+ G̃jJkpj

(
∂φkpi

∂y
+

1

R

∂uj
∂y

)2
]
dy. (3)

Here Fj , Jzj , Jyj , Jkpj are the area and inertia moments of the cross section of the j-th lateral bar
with respect to the axis Oz and the axis parallel to the axis Oy and passing through the gravity center of
the section and also its inertia moment at torsion; Ẽj , G̃j are elasticity and shear module of the material
of the j-th lateral bar.

Potential energy of external surface loads acting is viewed from viscous fluid applied to the shell,
is defined as a work done by these loads when taking the system from the deformed state to the initial
undeformated one and is represented in the form:

A0 = −
x2∫
x1

y2∫
y1

(qxu+ qyϑ+ qzw) dxdy. (4)

Total potential energy of the system equals the sum of potential energies of elastic deformations of
the shell and lateral ribs, and also potential energies of all external loads acting as viewed from viscous
fluid

Π = Π0 +

k2∑
j=1

Πj +A0. (5)

Kinetic energies of the shell and lateral ribs are written in the form [1]:

K0 = ρh

x2∫
x1

y2∫
y1

[(
∂u

∂t

)2

+

(
∂ϑ

∂t

)2

+

(
∂w

∂t

)2
]
dxdy

Kj = ρjFj

y2∫
y1

[(
∂uj
∂t

)2

+

(
∂ϑj
∂t

)2

+

(
∂wj

∂t

)2

+
Jkpj
Fj

(
∂φkpj

∂t

)2
]
dy. (6)

Here t is a time coordinate, ρ, ρj are densities of materials from which the shell was made, j is the
lateral bar. Kinetic energy of the laterally strengthened shell

K = K0 +

k2∑
j=1

Kj . (7)

The equations of motion of a ribbed shell are obtained based on Ostrogradsky-Hamilton’s action
stationarity principle:

δW = 0, (8)

where W =
t′′∫
t′
L̃dt is Hamilton’s action, L̃ = K − Π is Langrange’s function, t′′ and t′ are the given

arbitrary times.
Supposing that the shell is strengthened with infinitely many number of ribs, by limit passage k2 → ∞

allowing for (1) and that the variation and differentiation operations are permutational, we can reduce
equation (8) to the form[

b11
∂2

∂ξ2
+ b66

∂2

∂θ2

]
u+ (b12 + b66)

∂2ϑ

∂ξ∂θ
− (b11 + b12)

∂w

∂ξ
=

R2qx
2h
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(b12 + b66)
∂2u

∂ξ∂θ
+

{
b66

∂2

∂ξ2
+

[
G12 +
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hj
R

)2

G12γ
(2)
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∂θ2
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ϑ
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)2
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(2)
j
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R2qy
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∂
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j
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ϑ+

+

{
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γ
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y

R
, µ

(2)
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.

Surface loads qx, qy and qz acting on longitudinally strengthened shell as viewed from viscous fluid,
are determined from the solutions of Navier-Stock’s linearized equation:

ρ0
∂
−→
ϑ

∂t
= −gradp− µ

3ρ0a
2∗
qrad

(
∂p

∂t

)
+ µ∇2−→ϑ , (10)

where µ is dynamical coefficient of viscosity, p is pressure at some point of fluid, ρ0 is fluid’s density, a∗
is sound velocity in fluid, ∇2 is the Laplace operator,

−→
ϑ (ϑx, ϑy, ϑz) is the velocity vector of arbitrary

point of fluid.
On the contact surface a shell-viscous fluid the following one is fulfilled (r = R):

ϑx =
∂u

∂t
, ϑy =

∂ϑ

∂t
, ϑr =

∂w

∂t
. (11)

qx = −σrx, qθ = −σrθ, qz = −p (12)

where the viscosity forces are determined by the equalities

σrx = µ

(
∂ϑz
∂x

+
∂ϑx
∂z

)
, σrθ = µ

(
∂ϑz
∂y

+
∂ϑy
∂z

)
. (13)

By means of discontinuity equation and the equation of state, equation (10) is reduced to the equation
with respect to p:

1

a2
∂2p

∂t2
= ∇2p+

4

3

µ

ρ0a2
∂p

∂t
. (14)

Then we consider the hingely supported shells, i.e. for ξ = 0 and ξ = ξ1 (ξ1 = L/R) the following
boundary conditions are fulfilled:

ϑ = w = 0, T1 = M1 = 0.

We look for the components of the displacement vector of the point of the shell’s median surface in
the form

u = u0 cosnθ cos
mπ

ξ1
ξ sinω1t1; ϑ = ϑ0 sinnθ sin

mπ

ξ1
ξ sinω1t1;
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w = w0 cosnθ sin
mπ

ξ1
ξ sinω1t1, (15)

where u0, ϑ0, w0 are unknown constants, t1 = ω0t, ω0 =
√

G12

(1−ν2)ρR2 , ω1 = ω/ω0, ω is a sought-for
frequency.

After separation of variables, the solution of equation (14) has the form

p = p0J (λr) cosnθ sin
mπ

ξ1
ξ sinωt. (16)

Using (16) and (10) we can define the velocity components in fluid and by formula (13) the viscosity
forces.

Complementing by contact conditions (11), (12) the system of equations of motion of the shell (9),
fluid (10) we arrive at the contact problem on oscillations of viscous fluid-filled orthotropic shell strength-
ened with lateral ribs. In other words, the problem of oscillations of viscous fluid-filled orthotropic shell
is reduced to joint integration of equations of theory of shells, fluid, subject to the indicated conditions on
their contact surface.

Using and (11)-(13), (15) and (16) and (9) the problem is reduced to the homogeneous system of
linear algebraic equations of third order

ai1u0 + ai2ϑ0 + ai3w0 = 0 (i = 1, 2, 3) . (17)

The elements ai1, ai2, ai3 (i = 1, 2, 3) have a bulky form and we don’t cite them here. The nontrivial
solution of the system of linear algebraic equations of third order is possible only in the case when (17) is
the root of its determinant. The definition of ω1 is reduced to a transcendental equation as ω1 is contained
in the arguments of the Bessel function Jn:

det
∥∥aij∥∥ = 0. (18)

Note that for µ = 0 equation (18) goes into frequency equation of free oscillations of a laterally
strengthened ideal fluid-filled orthotropic cylindrical shell.

Fig.1. Dependence of the oscillations frequency parameter on elasticity modulus of lateral bar. The
dotted line is viscous fluid: the solid line-no viscosity.
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Let us consider some results of calculations performed proceeding from the above dependences in
ICM.

For geometrical and physical parameters characterizing the material of the shell, fluid and longitudinal
bar, we accepted:

h∗ =
h

R
= 0, 25 · 10−2; ξ1 = 1;Ej = 6, 67 · 109n/m2; ν = 0, 3;hj = 1, 39mm;

R = 160mm;L = 800mm;Fj = 5, 75mm2; Jxj = 19, 9mm4; Jkp,j = 0, 48mm4;

ρ0/ρ = 0, 105; ν2 = 0, 19; ν1 = 0, 11; a∗ = 1350
m

sec
;µ = 10, 02

kg

secm
.

Dependence of the frequency parameter on elasticity modulus of the lateral bar for different ratios of
elasticity modulus of the shell material are depicted in Fig. 1. Calculation shows that account of fluid’s
material viscosity reduces to decrease of frequency of eigen oscillations of the system in comparison
when the fluid is ideal. Furthermore, with increasing the ratios Ej/E1 the frequency of eigen oscilla-
tions of the system at first smoothly and then sharphy increase. Furthermore, with increasing the ratios,
the frequencies of eigen oscillations of the system increase. The dependence of frequency parameter on
density of lateral bar for different ratios of elasticity module of the shell material are given in Fig. 2. It
is seen from the figure that with increasing the ratio of frequencies ρi/ρ eigen oscillations of the system
decreases. In the same place, with increasing the ratios E1

E2
the frequencies of eigen oscillations of the

system increase.

Fig. 2. Dependence of frequency parameter of oscillations on density of lateral bar. The dotted line
is fluid. The solid line is no viscosity.
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