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Abstract. A mathematical model has been constructed and the bound-
ary value problem of unsteady horizontal well reservoir filtration has
been solved in view of reservoir and permeable pipe string dynamic re-
lation. As a result, it has been determined the formation productivity
depending on the depth of the horizontal part of the pipe string and the
parameters of the formation-borehole system. A formula depending on
the permeability of pipe wall and describing the pressure loss in the
horizontal part of the pipeline is derived.
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1 Introduction

This paper is devoted to the study of nonstationary liquid filtration process in view of the ”well-
reservoir” and permeable tube interdynamical relation. There are a large number of works on study of
filtration properties for horizontal wells [1-6], where it was considered a separate problems on this topics.
So, in [1], it was considered just liquid motion in the tube with permeable wall. In[2], it was studied
the fluid motion in permeable tube without regarding the fluid filtration process in layer. A motion of
non Newtonian liquid is considered in [3] in conical tube with permeable wall, where is not considered
the layer radial filtration and liquid motion relation in tube. In [4,5] it was studied the layer filtration
proses that does not take into the account the impact of the liquid motion in horizontal and vertical
well bore parts. Since all processes of liquid, filtration, motion and flow through permeable wall occur
simultaneously, there is a need to study of filtration proses in horizontal well, in view of formation-
borehole dynamical relation in permeable tube. Therefore, the study of hydrodynamical processes subject
to the formation-borehole dynamical relation in the permeable wells is an essential factor in order to
achieve a good exploitation performance of the horizontal wells.
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4 An Integrate Model for the Liquid Filtration Process

In this paper, it is constructed an integrate model for non stationary filtration process in layer that
takes into the account the permeability of tubes and the ”formation-borehole” dynamical relation, which
is more adequate to real well conditions.

In the horizontal wells, productivity increases by several times in comparison with the vertical wells
[7,18,23,25,16,11]. As a result, oil extraction increases. Increasing the number of horizontally drilled
wells requires a study of hydrodynamic processes occurring during their exploitation. Considerable num-
ber of papers are devoted to the investigation of filtration processes in the horizontal wells [15,8,6,10].
Most of them are devoted to the study of stationary filtration. But investigation of hydrodynamic pro-
cesses occurring in horizontal wells, using the dynamic ”reservoir-well” relation and the permeability of
horizontal part of the pipe string was not studied so much [24,21,3,5].

In this paper, we study the hydrodynamic processes during exploitation of horizontal wells using
the dynamic ”formation-well” relation and the permeability of pipes’ horizontal part that is perforated
or equipped the filter system. Well performance largely depends on the length of horizontal part. The
problem of finding the effective horizontal part length has of important practical and scientific interest
[22,19,13]. We determine the horizontal pipe length starting from the study in combination the reservoir
liquid filtration processes, considering boundary permeability through the walls of pipe and fluid flow
over the horizontal and vertical sections of well. For other boundary condition in permeable pipe see, [6,
17,9,4], where reservoir-well dynamical relation did not considered.

2 Liquid filtration

Consider a horizontal wellbore located in the center of the circular isotropic formation. We assume
that the filtration processes in the formation occurs flatly-radially. Then, ignoring gravity of liquid in the
accepted model the filtration equation will be as
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where χ = k
µβ , ∆P = P − Pk, µ is dynamic viscosity, β -permeability index, r -coordinate, t -time, rc

-well radius, Rk -radius of reservoir boundary. Initial and boundary conditions are

∆P |t=0 = P (0)− Pk for rc < r < Rk (2.2)

∆P |r=rc = Pc(t)− Pk for t > 0 (2.3)

∆P |r=Rk
= 0 for t > 0. (2.4)

where Pc(t) is wall pressure at the horizontal part, Pk -pressure on reservoir boundary.
Solution (2.1) with restrictions (2.2)-(2.4) and constant Pc(t) ≡ Pc(0) is following (see, [23]):
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J0, Y0 - Bessel functions of first and second order.
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To pass from (2.5) to solution (2.1) with variable Pc(t) use the Duhamel integral [25]:

∆P (r, t) = f1(0)∆P1(r, t) +

∫ t

0

�
f1(τ)∆P1(r, t− τ)dτ, (2.6)

where f1(t) = Pc(t)− Pk ·∆P1(r, t) and
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From (2.6) and (2.7) it follows that

∆P (r, t) = (Pc(0)− Pk)∆P1(r, t)−
t∫

0

�
P c(τ)∆P1(r, t− τ)dτ. (2.8)

3 Fluid motion in horizontal wellbore part

In the current context, the length of the horizontal wells reaches significant values. Formation fluid
passes through walls casing column and starts to flow through. After, the liquid rises up to mouth of well
through the vertical portion. Below we compose a mathematical model for permeability process and flow
at horizontal section of wellbore.

Consider a horizontal well (Fig. 1). Let’s place the origin at the end of the well and direct axis hori-
zontally to the left. The equation of fluid through the permeable wall will as [14]:

∂Q

∂x
= λ [Pc(x, t)− p(x, t)] , (3.1)

where Q is fluid consumption along the pipe, λ -coefficient characterizing pipe wall permeability, P -
liquid pressure at every pipe section, Pc -pressure over the horizontal well part. By [14,15] fluid flow
equation through a pipe is
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ρ
, (3.2)

where t is time, f -pipe passage area, ρ -fluid density, α -coefficient of resistance. By virtue of low
velocity, the second term in (3.2) can be neglected (see, [14]). Hence from (3.2) it follows that
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ρ
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ρ
, (3.3)

To determine the initial conditions, first consider the steady motion. From (3.1) and (3.3) it follows
that

d2P

dx2
− αλ

f
P = −αλ

f
Pc(0), (3.4)

where Pc(0) is initial value Pc(0). The boundary conditions are

Q(0, 0) = 0 (3.5)

Q(0, l) = Q0, (3.6)

where l is length of horizontal portion of tubing column, Q0 - fluid consumption at entrance into vertical
borehole section. From (3.3) it follows that

Q(0, x) = − f

α

dP

dx
. (3.7)

Taking into the account (3.7) solution (3.4) satisfying the constrains (3.5) and (3.6) looks as
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. (3.8)
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Fig.1. Calculation model.

Put x = l in (3.8):

Q0 =
[
Pc(0)− P (0, l)

]
· f
α

√
αλ

f
th

√
αλ

f
l, (3.9)

Now consider the unsteady flow. The equation of liquid motion has the form (3.2). Initial and bound-
ary conditions are

Q(0, x) =
Q0ch
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f x

sh
√
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, 0 < x < l, (3.10)

Q(0, t) = 0, t > 0,

Q(l, t) = Q0 + q(t), t > 0,

where Q0 + q(t) is fluid rate through the pipe section with unknown and time dependent function q(t).
Accept the following notation
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boundary conditions are

G(τ, 0) = 0, (3.12)
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)
= q1(τ), (3.13)
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Apply the Laplace transformation as in [12,20] by using (3.11) and the boundary conditions (3.12), (3.13),
and initial conditions (3.10) it follows that
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4 Balance of inflow and liquid flow in the horizontal part of well.

The amount of fluid inflow from reservoir per unit time should be equal to the amount passing through
cross section of vertical tube. The inflow from reservoir per unit time is
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dx. (4.1)

Fluid consumption at the end of horizontal pipe is

Q(l, t) = Q0 + q(t). (4.2)

Using (4.1) and (4.2) by formula (2.8), we have
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By Laplace’s transform it follows from (4.3) that
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where P c(s), q(s) are the Laplace transformations of corresponding functions. Applying inverse
transform from (4.4) we come to the following
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s = σ ± iω are roots of quadratic equation(
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5 Transient motion of fluid in vertical pipeline section.

Consider the unsteady fluid motion in the vertical pipeline part of the horizontal wellbore. If we place
the origin axis z in the lower section, we obtain the following equation of fluid motion [15,1,2].

∂v
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+ v
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= −1

ρ
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− 2hv − g, (5.1)

where v is axial fluid velocity, z -coordinate, h -coefficient of resistance, g -acceleration of gravity.
On other hand side,

v =
∂u

∂t
, (5.2)

where u is movement of any liquid column in cross section.
We can neglect the conventional term since that is small [25]. Then it follows from (5.1), (5.2) and
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Present the motion as sum of two components: as a solid (liquid column) and as a deformation of liquid
column part

u = ue + ur, (5.4)

where ue is movement of liquid column as solid, ur -reversible deformation of liquid column sections
Equation of liquid column motion as a solid is
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f
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The solution of (5.5) under initial conditions (5.6) and (5.7) is given as
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1
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dτ. (5.8)
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Inserting (5.4) into (5.3) for the equation (5.5) we have expression

∂2ur
∂t2

= a2
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Initial and boundary conditions are
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Search the solution of equation (5.9) satisfying boundary conditions (5.12) - (5.13) as in the works [1,2]
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Applying Laplace transformation, it follows from (5.15) that
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Mk andNk are unknown constants. Insert (5.16) into (5.14). Using initial conditions (5.10) and (5.11),
we have
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From (5.4), (5.8) and (5.17) we get
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Pressure at every liquid column cross-section is

P1 = E
∂u

∂z
. (5.19)

Then from (5.19), (5.18) we get
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(5.20)

Find the pressure at end of vertical section of the well from (5.20) and at z = 0
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From obtained integral equation (5.2) it needs to find P1(0, t). Applying Laplace transform, it follows
from (5.21) that
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√√√√1
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.

From (5.22) we find bottom-hole pressure depending on wellhead pressure vibration.
Wellhead pressure always pulsates. Let pulsating constituent be as

Py(t) = P0 +∆P0 cos νt, (5.23)

where ν is vibration frequency of wellhead pressure, P0 is constant component, ∆P0 -maximum value of
pulsating of wellhead pressure.
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Insert (5.23) into (5.22), after integration we have

P1(0, t) = −2A1

{
P0

h2 + ω2
1

[ω1 (1− exp(−ht) cosω1t)− h exp(−ht) sinω1t]

+
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2[h2 + (ω1 + ν)2]
[h (sin νt− exp(−ht) sinω1t)]

+
∆P0
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}
+
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∆P0

2[h2 + (ω2 + ν)2]
[(ω2 + ν) (cos νt+ exp(−ht) cosω2t)]

− ∆P0
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)
. (5.24)

It follows from (5.24) that natural vibration of liquid column decay after a while, only forced oscillation
remains. Therefore, from (5.24) we get

P1(0, t) =

− 2A1

{
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1
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}
.

(5.25)

Expenditure Q2 is found by the formula

Q0 =
2πk

µ
·

t∫
0

(Pk − Pc(0, x)) dx

ln Rk
rc

.

As a first step of approximation assume Pc(0, x) = Pc(0, 0). Then

Q0 =
2πkl

µ
· Pk − Pc(0, 0)

ln Rk
rc

. (5.26)
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Integrating (5.3) for the case of steady fluid motion, we get

P1(0, l)− Py(0) =

(
2hQ0

f
+ g

)
ρH. (5.27)

Then it follows from (3.9), (5.26) and (5.27) that

Q0 =

2πkl
µ · (Pk − Py(0)−Hρg)

ln Rk
rc

+ 2h
f

2πkl
µ Hρ+ 2πklα

µf

√
αλ
f tanh

√
αλ
f l

. (5.28)

Fluid expenditure in the lower tubing of vertical well part is

Q = f
∂u

∂t

∣∣∣
t=0

. (5.29)

Then from (5.29) and (5.18), (5.25) we can find the fluid expenditure in lower tubing section. Hence it
follows from (4.2) and (5.29) that

q(t) = f
∂u

∂t

∣∣∣
t=0

−Q0. (5.30)

From (5.30) and (5.18), (5.25) we find

q(t) = Q0 (exp(−2ht)− 1)

+ f

t∫
0

exp (−2h(t− τ))
(
− g +

P1(0, τ)− Py(τ)

ρH

)
dτ.

(5.31)

Now, using (4.5) and (5.28), (5.31) we can easily find Pc(t).

6 Results and Discussions

Fig. 2 and Fig. 3 shows the results of numerical calculations by formulas (5.24) and (5.28) under the
assumptions of parameters:

Rk = 75m, rc = 0.075m, µ = 10−3Pa · san, λ = 1
m2

Pa · san ,

k = 5 · 10−12, 10−12, 10−13; Pk = 25 · 106Pa; P0 = 106Pa;

∆P0 = 105Pa, a = 103
m

san
, H = 1500, 2000m, E = 109

N

m2
,

f = 3 · 10−3m2; h = 10−3san−1; α = 10−3 kg

m3
, g = 9.8

m

san2
.

As is evident from Fig. 2, the bottom well pressure is decaying and oscillatory. Over time, the natural
oscillations of the system remain.

Fig. 3 presents dependence of producing capacity versus of horizontal pipe length to reservoir bound-
ary radius ξ = l

Rk
. Fig. 3 shows that increase of horizontal pipe length brings to well production increase.

In a certain value of length that depends on the permeability the increase slow, and that stabilizes.
This is of practical importance, since the formula of expenditure considering the filtration properties

of the reservoir allows us to determine the required length of the horizontal part of the pipe string.
Fig. 3 also shows that decreasing in-place permeability the producing capacity increases almost lin-

early depending on the length of the horizontal part of the wellbore. This means at low permeability the
length of the horizontal wellbore part should be taken as long as possible.

6.1 Conclusion.

A mathematical model has been constructed for the unsteady filtration of liquid in horizontal wells.
Here is dynamic presented formation-well connection on the permeability of horizontal well-wall part of
pipe string. Formulas are obtained for determining the performance of the reservoir and the bottom hole
pressure on the filtration properties of the formation and formation -borehole system parameters.
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Fig.2. Dependence of formation productivity from power of layer.

1. k = 5.10−12m2, H = 1500m; 2. k = 5.10−12m2, H = 2000m;

3. k = 10−12m2, H = 1500m; 4. k = 10−12m2, H = 2000m;

5. k = 10−13m2, H = 1500m; 6. k = 10−13m2, H = 2000m

Fig.3. Bottomhole pressure dynamics.
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