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Behavior of rotating cylinder under thermomechanical loadings
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Abstract. We consider the solution of a problem on behavior of a hol-
low annular section viscoelastic cylinder rotating around its symmetry
axis, connected with an elastic shell with uniform pressure and high
temperature (i.e. combustion temperature) acting on its internal sur-
face. Mechanical properties of the material are temperature dependent
and this transforms the problem into nonlinear one. A moving nonlinear
boundary value problem with regard to ablation on the internal surface
is solved. A new method for solving a nonlinear problem of linear ther-
moviscoelasticity with arbitrary rheology is suggested and this reduces
to solving Volterra-type integral equation of second kind.
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1 Introduction

Determination of thermomechanical stresses in viscoelastic cylinders is of great technical interest in
conformity to the problem of determination of stresses arising in grains of solid fuels. At present, this
topic is one of the intensely studied ones in theory of viscoelasticity. The brief review of preceding papers
is in [6-9].

We consider an annular section cylinder rotating around its symmetry axis with angular velocity ω (t).
Uniformly distributed loads act on the internal and external surfaces of the cylinder. Temperature T1, that
in the sequel is maintained constant, instantly influences on the internal surface.

Under ablation of the internal surface, the radius r1 is a monotonically increasing time function
(r1 = r1 (t)), i.e. a moving boundary problem is studied. The external surface of the cylinder is rigidly
connected with an elastic shell of thickness h, as it was shown in [6] by using momentless theory one can
find:

σr (b, t) = −Beθ (b, t) (1.1)
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B =
1− vR
1 + vR

· ERh

h+ b
,

where ER, vR are elastic characteristics of the shell; b is an inner radius, h is the shell’s thickness.
In the case under consideration, only one of the vector displacements components is nonzero. For

deformations tensor vector components

u = u (r, t) ̸= 0er =
∂u

∂r
; eθ =

u

r
.

Volume deformation is determined by the formula

∂u

∂r
+

u

r
= l (r, t) (1.2)

or
1

r

(
∂

∂r

)
(ur) = l,

hence
u (r, t) = A (t) /2r +

(
1/r

)∫
rl (r, t) dr

er = −A (t) /2r2 + l (r, t)− 1

r2

∫
rl (r, t) dr (1.3)

eθ = A (t) /2r2 +
1

r2

∫
rl (r, t) dr.

In isotropic incompressible linear-viscoelastic materials, the stresses and deformations, allowing for
temperature dependence of the material properties are connected as follows:

σr,θ =

∫ t

0

J
(
t′ − τ ′

) ∂

∂τ
l (r, t) dτ +

∫ t

0

K
(
t′ − τ ′

) ∂

∂τ
er,θ (τ) dτ

σz =

∫ t

0

J
(
t′ − τ ′

) ∂

∂τ
l (r, τ) dτ, (1.4)

where J,K are the functions of volume and shear relaxation, t′ is the reduced time.
Using temperature time analogs [1] for describing the reduced time, and using the technique for

solving such problems, we can represent:

σr,θ =

∞∑
n=0

λnσ
(n)
r,θ ; er,θ =

∞∑
n=0

λne
(n)
r,θ ,

J
(
t′ − τ ′

)
=

∞∑
n=1

λnJn (r, t− τ) + J0 (t− τ) (1.5)

K
(
t′ − τ ′

)
=

∞∑
n=1

λnKn (r, t− τ) +K0 (t− τ) , un (r, t) =
1

r

∫
rln (r, t) dr,

l (r, t) =

∞∑
n=0

λnln (r, t) , u0 (r, t) = A (t) /2r +
(
1/r

)∫
rl0 (r, t) dr,

where λ is a small parameter, the expressions for Jn, Kn are reduced in [9]. Taking the last expressions
into account and equating the same powers of λ for σ(0)

r,θ , we have:

σ
(0)
r,θ =

∫ t

0

J0 (t− τ)
∂

∂τ
l0 (r, t) dτ +

∫ t

0

K0 (t− τ)
∂

∂τ
e
(0)
r,θ (τ) dτ

σz =

∫ t

0

J0 (t− τ)
∂

∂τ
l0 (r, τ) dτ. (1.6)
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The stress tensor components satisfy the equation:

∂σr
∂r

+
σr − σθ

r
+ ρω2 (t) · r = 0

∫ t

0

[J0 (t− τ) +K0 (t− τ)]
∂2

∂r∂τ
l (r, τ) dτ + ρω2 (t) · r = 0. (1.7)

For convenience we introduce the denotation:

Ω0 (t) =

∫ t

0

H0 (t− τ)
∂

∂τ
ω2 (τ) dτ, (1.8)

where the auxiliary function H0 (t) is the solution of the equation:∫ t

0

[J0 (t− τ) +K0 (t− τ)]
∂

∂τ
H0 (τ) dτ = 1. (1.9)

Transforming equation (1.7) we get:

l0 (r, t) = l0 (t)−
1

r
ρΩ0 (t) r

2. (1.10)

Then:
e
(0)
r = l0 (t) /2 +A (t) /2r2 − 3

8
ρr2Ω0 (t) (1.11)

e
(0)
θ = l0 (t) /2 +A (t) /2r2 − ρr2

8
Ω0 (t)σ

(0)
r

=

∫ t

0

[J0 (t− τ) +K0 (t− τ)]
∂

∂τ
l0 (τ) dτ − 1

2r2

∫ t

0

K0 (t− τ)
∂

∂r
A (τ) dτ

−1

r
ρr2

{
ω2 (t)− 1

4

∫ t

0

K0 (t− τ)
∂Ω0 (τ)

∂τ
∂τ

}
(1.12)

σ
(0)
θ =

∫ t

0

[
J0 (t− τ) +

1

r
K0 (t− τ)

]
∂

∂τ
v0 (τ) dτ +

1

2r2

∫ t

0

K0 (t− τ)
∂

∂r
A (τ) dτ

−1

r
ρr2

{
ω2 (t)− 1

4

∫ t

0

K0 (t− τ)
∂

∂τ
Ω0 (τ) ∂τ

}
σ
(0)
z =

∫ t

0

J0 (t− τ)
∂

∂τ
l0 (τ) dτ − 1

r
ρr2

∫ t

0

J0 (t− τ)
∂

∂τ
Ω0 (τ) dτ.

Here we have two unknown functions l0 (t) and A (t), that should be determined from the boundary
conditions.

σ
(0)
r [a (t) , t] = −π (t) , (1.13)

where r1 = a (t) is change of the radius of the internal surface in the availability of ablation that is a
monotonically increasing time function.

π (t) is the given pressure on the internal surface. The external surface of the viscoelastic cylinder is
rigidly connected with an elastic shell of thickness h, and the boundary condition for r = r2 = b will be
in the form (1.1). Satisfying boundary conditions (1.1), (1.12), (1.13) after some transformations we get:∫ t

0

[J0 (t− τ)−K0 (t− τ)]
∂

∂τ
l0 (r2, τ) dτ

∫ t

0

[K (t− τ)−B] · ∂

∂τ

[
l0 (r2, τ)

2
+

A (τ)

2b2

]
dτ

−π (t) =

∫ t

0

[J0 (t− τ) +
1

r
K0 (t− τ)]

∂

∂τ
l0 (r2, τ) dτ
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− 1

2a2 (t)

∫ t

0

K0 (t− τ)
∂

∂τ
A (τ) dτ.

Excepting the terms containing the integrals with l0 (r2, t), we get∫ t

0

K0 (t− τ)
∂

∂τ
A (τ) dτ =

Ba2 (t) ξ0 (t)

a2 (t)− b2
− 2a2 (t) b2P0 (t)

a2 − b2
,

where

P (t) = π (t) +
Bρb2Ω0 (t)

8
−N2 ·

(
a2 (t)− b2

)
N2 (t) =

1

2
ρ

(
ω2 (t)− 1

4

∫ t

0

K0 (t− τ)
∂

∂τ
Ω0 (τ) dτ

)
P (t) , N2 (t) are the known functions.
From these equations excluding the integrals containing the terms with A (t), we get:∫ t

0

[J0 (t− τ) +
1

r
K0 (t− τ)]

∂

∂τ
l0 (τ) dτ =

Bξ0 (t)

2 (a2 (t)− b2)
− a2P1 (t)

a2 (t)− b2
,

where

P1 (t) = π (t) +
Bρb4Ω0

8a2
− 2

(
1− b2

a2

)
N2 (t) ,

ξ0 (t) = b2l0 (t) +A (t) .

Allowing for them, we rewrite (1.12)

σ
(0)
r =

Bξ0 (t)

2 (a2 (t)− b2)

(
1− a2 (t)

r2

)
− a2 (t)

a2 (t)− b2

(
P1 (t)−

b2

r2
P0 (t)

)
−N2 (t)

σ
(0)
θ =

Bξ0 (t)

2 (a2 (t)− b2)

(
1 +

a2 (t)

r2

)
− a2 (t)

a2 (t)− b2

(
P1 +

b2

r2
P0

)
−N2 (t) . (1.14)

Introduce the auxiliary function Φ0 (t) satisfying the equation∫ t

0

[J0 (t− τ) +
1

r
K0 (t− τ)]

∂Φ0 (τ)

∂τ
dτ =

∫ t

0

(K0 (t− τ)−B)
∂

∂τ

(
j0 (τ) +

1

r
K (τ)

)
dτ.

From the last expressions we get

Bξ0 (t)−
(
a2

b2
− 1

)∫ t

0

Φ0 (t− τ)
∂

∂τ
ξ0 (τ) dτ = 2a2 (t)P1 (t)

ξ0 (t) is determined from (1.14). Removing the discontinuity for t = 0 and integrating by parts, we get

ξ0 (t) =

∫ t

0

Φ∗ (t, τ) ξ0 (τ) dτ = π∗ (t) , (1.15)

where
Φ∗ = (t, τ) = [1/Φ0 (t)]

[
1− a2/b2

]
∂

∂τ
Φ0 (t− τ)

π∗ (t) = [1/Φ0 (t)]
[
2a2 (t) · P1 (t)

]
Φ0 (t) = B =

[
1− a2 (t) /b2

]
Φ (0) .

Equation (1.15), is Volterra’s integral equation of second kind, whose general solution is of the form:

ξ0 (t) = π∗ (t) +

∫ t

0

Q∗ (t, τ)π∗ (τ) dτ, (1.16)

where Q∗ is a resolvent of the equation.
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By means of the iterations method we can find Q∗in the form

Q∗ (t, τ) =
∞∑

n=1

q(n) (t, τ) ,

q(1) (t, τ) = Φ∗ (t, τ) q(n) (t, τ) =

∫ t

τ

q(1) (t, s) q(n−1) (t, s) ds,

ξ
(1)
0 (t) = π∗ (t) +

∫ t

0

Φ∗ (t, τ)π∗ (τ) dτ.

Introduce the function G0 (t) satisfying the relation:∫ t

0

K0 (t− τ)
∂

∂τ
G0 (τ) dτ = G (t) (1.17)

A (t) =

∫ t

0

G (t− τ)
∂

∂τ

[
Ba2 (τ) ξ (τ)

a2 (τ)− b2
− 2a2 (τ) b2P0 (t)

a2 (τ)− b2

]
dτ.

Then the appropriate change of the volume

l0 (t) =
1

b2
(ξ (t)−A (t)) .

Taking into account what has been said, we get expressions for the components of deformation tensor
and dilatation. Now we calculate σ

(1)
r,θ , e

(1)
r,θ .

Taking into account (1.5) in (1.4) and equating to zero the coefficient λ (of first degree), we get:∫ t

0

[J0 (t− τ) +K0 (t− τ)]
∂2

∂r∂τ
l1 (r, τ) dτ

+

∫ t

0

[J1 (r, t− τ) +K1 (r, t− τ)]
∂2

∂r∂τ
l0 (r, τ) dτ = 0.

Denote the second summand in the last expression by the known function F1 (r, t) and get∫ t

0

[J0 (t− τ) +K0 (t− τ)]
∂2

∂r∂τ
l1 (r, τ) dτ + ρF 2

1 (r, t) r = 0 (1.18)

F 2
1 (r, t) =

1

ρr

∫ t

0

[J1 (r, t− τ) +K1 (r, t− τ)]
∂2

∂r∂τ
l0 (r, τ) dτ.

Comparing (1.18) with (1.5), we find that they are identical, and all subsequent arguments when solving
equation (1.18) will be similar to the previous one only by substitution of F 2

1 (r, t) for ω2 (t)

Then
l1 (r, t) = l0 (t)−

1

r
ρr2Ω1 (r, t) ,

Ω1 (r, t) =

∫ t

0

H0 (t− τ)
∂

∂τ
F 2
1 (r, τ) dτ.

In the similar way, for l0 (r, t)we have:

ln (r, t) = l0 (t)−
1

r
ρr2Ωn (t) ,

Ωn (r, t) =

∫ t

0

H0 (t− τ)
∂

∂τ
F 2
n (r, τ) dτ

F 2
n (r, t) =

n∑
k=1

∫ t

0

[Jk (r, t− τ) +K1 (r, t− τ)]
∂2

∂r∂τ
l0 (r, τ) dτ.
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The boundary conditions for σ(n)
r,θ take the form:

σ
(n)
r (a (t) , t) = 0, σ

(n)
r (b, τ) = 0 (n = 1, 2, ...) . (1.19)

Here the above stated technique remains valid, but in the expressions (1.14) we should assume B = 0,
π (t) = 0, and replace the functions P1 (t) , P0 (t) by new known functions Pn1 (t) , Pn0 (t).

For simplicity we are restricted only by the calculation of σ(1)
r

σ
(1)
r =

∫ t

0

[
J0 (t− τ) +

1

r
K0 (t− τ)

]
∂

∂τ
l0 (τ) dτ − 1

2r2

∫ t

0

K0 (t− τ)
∂

∂τ
A (τ) dτ

−1

r
ρr2

{
F 2
1 (r, t)− 1

4

∫ t

0

K0 (t− τ)
∂Ω1 (r, τ)

∂τ
∂τ

}
.

Satisfying boundary conditions (1.19), we get:

N0 (t)−
1

2a2 (t)
N (t)− ρa2 (t)

2

{
F 2
1 (a (t) , t)− 1

4

∫ t

0

K0 (t− τ)
∂Ω1 (a (τ) , τ)

∂τ
dτ

}
= 0

N0 (t)−
1

2b2
N1 (t)−

ρb2

2

{
F 2
1 (b, t)− 1

4

∫ t

0

K0 (t− τ)
∂Ω1 (b, τ)

∂τ
dτ

}
= 0,

where:

N0 (t) =

∫ t

0

[
J0 (t− τ) +

1

r
K0 (t− τ)

]
∂

∂τ
l0 (τ) dτ,

N1 (t) =

∫ t

0

K0 (t− τ)
∂

∂τ
A (τ) dτ

P3 (r, t) =
(
ρr2/2

)[
F 2
1 (r, t)− 1

4
K0 (t− τ)

∂Ω1 (r, τ)

∂τ
dτ

]
.

Excepting N0, we find:

N1 (t) = − 2a2 (t) b2

a2 (t)− b2
(P3 (a (t) , t)− P3 (b, t)) .

Excepting N1, we get:

N0 (t) =
1

2 (a2 (t)− b2)
(P3 (a (t) , t)− P3 (b, t)) .

Allowing for the last expressions, we get:

σ
(1)
r (r, t) =

1

2 (a2 (t)− b2)
(P3 (a (t) , t)− P3 (b, t)) ·

(
1− 2a2 (t) b2

r2

)
− 1

r2
ρr2

×
{
F 2
1 (r, t)− 1

4

∫ t

0

K0 (t− τ)
∂Ω1 (r, t)

∂τ
dτ

}
.

In the same way, we can write σ
(1)
θ (r, t) .

As is seen from the last expression σ
(1)
r

(
σ
(1)
θ as well

)
are obviously independent of ξ0 (t), they

depend on ξ0 (t) only by F 2
1 (r, t). This circumstance improves the results of calculations. σ(1)

r,θ may be
considered as refinement for calculations because of account of temperature dependence of mechanical
properties of the material. For ω = 0, t′ = t (i.e. without temperature dependence of the material proper-
ties taken into account) the solution coincides with the solution in [9].

For quality illustration of possibilities of the suggested method, consider some special cases.
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1. The material is incompressible: Then σ0
r,θ = −p (t) +

∫ t
0
K0 (t− τ) ∂

∂τ e
(t)
r,θdτ , l0 (t) = 0;

J (t) → ∞ where p (t) is hydrostatic pressure:

ξ0 (t) = A (t) , −e0r = e0θ = A (t) /2r2.

Allowing fort this, we find:

σ0
r,θ = −p (t)− 1

2r2

∫ t

0

K0 (t− τ)
∂A (τ)

∂τ
dτ,

−p (t) =
1

2r2

{
Ba2 (t)A (t)

a2 (t)− b2
− 2a2 (t) b2P0 (t)

a2 − b2

}
,

BA (t)−
(
a2 (t)

b2
− 1

)∫ t

0

K (t− τ)
∂

∂τ
A (τ) dτ = 2a2 (t)P1 (t) .

2. Assume that there is no ablation on the internal surface, then a (t) = a − const. Integral equation
(1.15) is reduced to a convolution type integral:

ξ0 (t)−
∫ t

0

Φ∗ (t− τ) ξ0 (τ) dτ = π∗ (t) ,

where

Φ∗ (t− τ) =
1

Φ0

(
1− a2

b2

)
∂

∂τ
Φ (t− τ) ,

π∗ (t) =
(
2a2/Φ0

)
P1 (t) , Φ0 = B + Φ (0)

(
1− a2/b2

)
.

Increase of the internal surface at the expense of ablation may be given in the following form:

a2 (0) /a2 (t) = 1−
(
1− a2 (0) /b2

)
t

t0
.

The pressure influencing on moving internal surface, is given in the form of an exponentially increas-
ing function

π (t) /k (0) = P0

[
1− e−mt/t0

]
,

where m, t0 − const.

The analytic solution here may be easily obtained by using the Laplace transform [9]. From the above
stated we can make the following conclusions:

- We found solutions of a problem on behavior of a hollow viscoelastic cylinder fastened with an
elastic shell with uniform pressure and high temperature (i.e. combustion temperature) acting on its inter-
nal surface. Mechanical properties of the material depend on temperature that changes the problem into
nonlinear one. When ablation on the internal surface is taken into account, a moving boundary nonlinear
problem is solved.

- We suggest a method new for solving the stated problem, and this reduces to the solution of a
Volterra type integral equation of second kind for ξ0 (t). It was determined that the dependence of the
radial shift on ξ0 (t) is linear, and this admits to determine experimentally ur (b, t) for the series tk and to
find stress distributions not knowing their history of development.

2 Conclusions

The solution of a problem on behavior of rigid viscoelastic cylinders with arbitrary rheology, rigidly
built-in interior to an elastic shell in transportations and other operational conditions, is reduced to defini-
tion of a function, to the solution of an integral equation. The considered statement has no analognes and
is the very adequate approximate-analytic solution of the problem of self-heating of plastic masses under
cyclic loadings whose significance of solution was extensively cited in [9]. General scheme of application
of a new technique of solution of such problems, variants of the choice of small parameter, expressions
for determining other members of the series are given in (1.9) and it is shown that when a small parameter
is chosen successfully, account of two members of the series gives favourable practical results.
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