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Generalized quasiplane strain state for linear-elastic bodies
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Abstract. In the paper the notion of ”generalized quasiplane strain
state” is introduced. It is proved that under generalized quasiplane
strain state the stress state in the sections perpendiculas to the axis of
a finite length prismatic body is independent of mechanical character-
istics of the material and is determined by boundary conditions and the
shape of the cross-section contour.
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1 Introduction

There exist strain states under which displacement vector components have the form:

u1 = u1(x1x2); u2 = u2(xlx2); u3 = u3(x3), (1.1)

where x1, x2, x3 are the axes of Cartesian system of coordinates, the axes x1, x2 are in horizontal plane,
while x3 is vertically upward directed. Strain state that appears under the action of proper weight in rocks
may be an example of such a strain state. We call such a strain state in finite length prismatic bodies, a
generalized quasiplane strain state. Prove that under generalized quasiplane strain state the stress state in
sections perpendicular to the axis of a prismatic body is independent of mechanical characteristics of the
material and is determined by boundary conditions and the contour shape.

In the paper [1] strain state for finite length prismatic bodies, whose axes coincide with the axis x3
and the there hold the following displacements

u1 = u1(xl, x2); u2 = u2(x1, x2) : u3 = ax3 + b, (1.2)

where a and b are constant values, is called a quasiplane strain state. It is proved that under plane strain
state realized for an infinitely long prismatic body, the stress state under quasiplane strain state in cross-
sections of finite length prismatic bodies is independent of mechanicsl charactestics of the material and
are determined by boundary conditions and the shape of the contour of the cross-section.
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At first prove that when strains are infinitely small, in the bodies under initial stresses arising at the
expense of proper weight, stresses changes that occur at the expense of external actions satisfy homoge-
nous differential equilibrium equations. Denote the tensor components of initial stresses that occur at
the expense of proper weight by σ0

ij , while the tensors components of stresses arising at the expense of
proper weight and action of external actions by σij . Then the equilibrium equations before application of
external forces will be:

σ0
ij,j + ρFi = 0 ij = 1− 3. (1.3)

In equalities (3) by the repeated index j we perform summation from one to three, the comma means
differential with respect to coordinate with the index following the comma.

The stresses arising after the action of external forces also satisfy the equilibrium equations:

σij,j + ρFi = 0. (1.4)

Because of smallnes of deformations, we can assume that the density ρ = const. Subtracting equation
(3) from equation (4), we get:

σij,j = 0, (1.5)

where σij,j = σij − σ0
ij are stress changes at the expense of external actions.

Dependences of changes of small deformations on displacements changes and Hook’s law in changes,
will be:

εij =
1

2

(
ui,j + uj,i

)
(1.6)

ε11 =
1

E
[σ11 − v(σ22 + σ33)]

ε22 =
1

E
[σ22 − v(σ11 + σ33)]

ε12 =
1 + v

E
σ12; ε13 = ε23 = 0 (1.7)

ε33 =
1

E
[σ33 − v(σ11 + σ22)] .

System (5) - (7) is closed. In this system the number of equations and the number of unknowns equals
21, consequently, from this system we can determine all changes of the stresses σij = σij −σ0

ij . Whence
σij = σ0

ij + σij .

Now prove that under generalized quasiplane strain state, the stress state in sections perpendicular
to the cylinder’s axis is independent on mechanical characteristics of the material and is determined by
boundary conditions the contour shape.

As is seen (1), the generalized quasiplane strain state differs from quasiplane strain state by the fact
that under quasiplane deformation state u3 linearly depends on x3, while under generalized quasiplane
deformation state there is not restriction of linearity of u3 from x3. We also consider that equilibrium
conditions are homogeneous, i.e. volume forces are not taken into account. Allowing for (1), from geo-
metrical relations we get:

ε11 =
∂u1
∂x1

; ε22 =
∂u2
∂x2

; ε12 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
(1.8)

ε13 = ε23 = 0 ε33 = u′3.

Take the last equation of (8) in the last equation of (7) (for simplicity in equalities (5)-(7) we will not
place dashes over the quantities). Substituting the last equation of (8) in the last equation of (7), we have

u′3 =
1

E
[σ33 − v(σ11 + σ22)] ,

whence
σ33 = v(σ11 + σ22) + Eu′3. (1.9)
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Taking into account (9) in (7), we have:

ε11 =
1 + v

E
[σ11 − v(σ11 + σ22)]− vu′3

ε22 =
1 + v

E
[σ22 − v(σ11 + σ22)]− vu′3

ε12 =
1 + v

E
σ12. (1.10)

Five from the six strain compatibility equations in the given case turn into identity and there remains
only one equation

∂ε11
∂x22

+
∂2ε22
∂x21

= 2
∂2e12
∂x1∂x2

. (1.11)

The equilibrium equations have the form:

∂σ11
∂x1

+
∂σ12
∂x2

= 0,
∂σ21
∂x1

+
∂σ22
∂x2

= 0.

We differentiate the first of these equations with respect to x1, the second with respect to x2, and
putting them together, we get:

∂2σ11
∂x21

+
∂2σ22
∂x22

= −2
∂2σ12

∂x1∂x21
. (1.12)

Take into account equality (10) in (11). Then

∂2

∂2x2
[σ11]− 4v (σ11 + σ12) +

∂2

∂x21
[σ22 − v (σ11 + σ12)] = 2

∂2σ12
∂x1∂x2

. (1.13)

Having substituted (12) in (13), we have:

∆ (σ11 + σ12) = 0. (1.14)

Here ∆ is Laplacian two dimensional operator.
Introducing the Airy’s stress function, as in plane strain [2], from (14) we get:

∆∆ϕ = 0. (1.15)

Here ϕ(x1, x2) is Airy’s stress function,

∆∆ =
∂4

∂4x21
+ 2

∂4

∂x21∂2x
2
+

∂4

∂4x2
.

It is known that for the first boundary value problem, the boundary conditions have the form: [2]

σ11n1 + σ12n2 = T1 (1.16)

σ21n1 + σ22n2 = T2,

where n1, n2 are the projections of the vector of normal n to the contour of section on the coordinate
axis x1, x2, T1, T2 are projections of boundary forces on coordinate axis x1, x2. Equations (14) - (16)
don’t contain mechanical characteristics of the material. Consequently, mechanical characteristics of the
material will not enter the expressions of stresses determined from these equations. Thus, we proved the
following theorem: Under generalized quasiplane strain state, the stress state in sections perpendicular to
the axis of a finite length prismatic body is independent of mechanical characteristics of the material and
is determined by boundary conditions and the shape of the cross-section contour..

This is the generalization of Morris-Lew’s theorem for generalized quasiplane deformation state.
In special case, when the stresses arising at the expense of external actions in rocks are determined,

the volume forces don’t participate. Consequently, in this case displacement components have the form
(1), therefore, stress changes in rocks at the expense of external actions are independent of mechanical
characteristics of the material.
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